Numerical Methods to Solve 2-D and 3-D Elliptic Partial Differential Equations Using Matlab on the Cluster maya
نویسندگان
چکیده
Discretizing the elliptic Poisson equation with homogeneous Dirichlet boundary conditions by the finite difference method results in a system of linear equations with a large, sparse, highly structured system matrix. It is a classical test problem for comparing the performance of direct and iterative linear solvers. We compare in this report Gaussian elimination applied to a dense system matrix, Gaussian elimination applied to a sparse system matrix, the classical iterative methods of Jacobi, Gauss-Seidel, and SOR, and finally, the conjugate gradient method without preconditioning, and the conjugate gradient method with SSOR preconditioning. The key conclusions are: (i) The comparison of dense and sparse storage shows the crucial importance of sparse storage mode to solve problems even of intermediate size. (ii) The conjugate gradient method outperforms the classical iterative methods in all cases. (iii) Preconditioning can speed up the conjugate gradient method by an order of magnitude. (iv) We find that in two dimensions Gaussian elimination of a sparse system matrix is the fastest method, but runs out of memory eventually, where iterative methods can still solve the problem, but at the price of possibly extremely long run times. (v) However, in three dimensions, the iterative methods can be significantly faster than Gaussian elimination and can solve significantly larger problems. This explains the importance of iterative methods for three-dimensional problems.
منابع مشابه
A numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method
In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.
متن کاملThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملNumerical Methods for Fuzzy Linear Partial Differential Equations under new Definition for Derivative
In this paper difference methods to solve "fuzzy partial differential equations" (FPDE) such as fuzzy hyperbolic and fuzzy parabolic equations are considered. The existence of the solution and stability of the method are examined in detail. Finally examples are presented to show that the Hausdorff distance between the exact solution and approximate solution tends to zero.
متن کاملNumerical studies of non-local hyperbolic partial differential equations using collocation methods
The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accu...
متن کاملApplication of the tan(phi/2)-expansion method for solving some partial differential equations
In this paper, the improved -expansion method is proposed to solve the Kundu–Eckhaus equation and Gerdjikov–Ivanov model. The applied method are analytical methods to obtaining the exact solutions of nonlinear equations. Here, the aforementioned methods are used for constructing the soliton, periodic, rational, singular and solitary wave solutions for solving some equations. We obtained furthe...
متن کامل